SUMOylation is essential for sex-specific assembly and function of the Caenorhabditis elegans dosage compensation complex on X chromosomes.
نویسندگان
چکیده
The essential process of dosage compensation equalizes X-chromosome gene expression between Caenorhabditis elegans XO males and XX hermaphrodites through a dosage compensation complex (DCC) that is homologous to condensin. The DCC binds to both X chromosomes of hermaphrodites to repress transcription by half. Here, we show that posttranslational modification by the SUMO (small ubiquitin-like modifier) conjugation pathway is essential for sex-specific assembly and function of the DCC on X. Depletion of SUMO in vivo severely disrupts binding of particular DCC subunits and causes changes in X-linked gene expression similar to those caused by deleting genes encoding DCC subunits. Three DCC subunits are SUMOylated, and SUMO depletion preferentially reduces their binding to X, suggesting that SUMOylation of DCC subunits is essential for robust association with X. DCC SUMOylation is triggered by the signal that initiates DCC assembly onto X. The initial step of assembly-binding of X-targeting factors to recruitment sites on X-is independent of SUMOylation, but robust binding of the complete complex requires SUMOylation. SUMOylated DCC subunits are enriched at recruitment sites, and SUMOylation likely enhances interactions between X-targeting factors and condensin subunits that facilitate DCC binding beyond the low level achieved without SUMOylation. DCC subunits also participate in condensin complexes essential for chromosome segregation, but their SUMOylation occurs only in the context of the DCC. Our results reinforce a newly emerging theme in which multiple proteins of a complex are collectively SUMOylated in response to a specific stimulus, leading to accelerated complex formation and enhanced function.
منابع مشابه
Restricting Dosage Compensation Complex Binding to the X Chromosomes by H2A.Z/HTZ-1
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals an...
متن کاملUnexpected Role for Dosage Compensation in the Control of Dauer Arrest, Insulin-Like Signaling, and FoxO Transcription Factor Activity in Caenorhabditis elegans
During embryogenesis, an essential process known as dosage compensation is initiated to equalize gene expression from sex chromosomes. Although much is known about how dosage compensation is established, the consequences of modulating the stability of dosage compensation postembryonically are not known. Here we define a role for the Caenorhabditis elegans dosage compensation complex (DCC) in th...
متن کاملCondensin-mediated chromosome organization and gene regulation
In many organisms sexual fate is determined by a chromosome-based method which entails a difference in sex chromosome-linked gene dosage. Consequently, a gene regulatory mechanism called dosage compensation equalizes X-linked gene expression between the sexes. Dosage compensation initiates as cells transition from pluripotency to differentiation. In Caenorhabditis elegans, dosage compensation i...
متن کاملChromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution
Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites ...
متن کاملX-Chromosome dosage compensation.
In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 40 شماره
صفحات -
تاریخ انتشار 2013